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Chapter 1

Summary

1. Introduction

Since Paul Dirac’s formulation (1928) of the field equation for a quantized electron in flat Minkowski
space, Dirac operators on Riemannian manifolds have become a powerful tool for the treatment
of various problems in geometry, analysis and theoretical physics. Meanwhile, since the fifties the
French school around M. Berger has developed the idea that manifolds should be subdivided into
different classes according to their holonomy group. If they are not of general type, the name special
(integrable) geometries has become customary for these. Already at early stage there were hints that
parallel spinor fields induce special geometries, but this idea was not further investigated. In the
early seventies, A. Gray generalized the classical holonomy concept to the effect that he introduced a
classification principle for non-integrable special Riemannian geometries ([Gra71]) and studied the
defining differential equations of each class. The connection between these two lines of development
in mathematical physics became clear in the eighties in the context of twistor theory and the study
of small eigenvalues of the Dirac operator and was mainly developed by the Berlin school around
Th. Friedrich ([Fri80],[BFGK91]). In the homogeneous case, integrable geometries correspond to
symmetric spaces, whose classification by E. Cartan had been a milestone in the differential geometry
of the 20th century. The much richer class of homogeneous reductive spaces—which is inaccessible
to any kind of classification—has been studied intensively since the mid sixties and has turned out
to be a main source of examples for non-integrable geometries.

The interest in non integrable geometries was revived in the past years through recent developments
in string theory. Firstly, integrable geometries (Calabi-Yau manifolds, Joyce manifolds etc.) are
exact solutions of the Strominger model (1986, [Str86]), however with vanishing B-field. If one de-
forms these vacuum equations and looks for models with non trivial B-field, a new approach proposed
in 2000-2002 by Friedrich, Ivanov, Papadopoulos and others ([FI02], [DI01], [IP01]) implies that
solutions can be constructed geometrically from non integrable geometries. In this way, manifolds
not belonging to the field of algebraic geometry (integrable geometries) become accessible to inter-
esting models in theoretical physics. Starting from a problem in string theory, B. Kostant introduced
a purely algebraic object known as ”Kostant’s cubic Dirac operator” ([Kos99]) in representation
theory.

The habilitation thesis at hand starts with the decisive observation ([Agr02],[Agr03]) that Kostant’s
operator may be interpreted as a usual Dirac operator which is induced by a non standard connection
on a homogeneous naturally reductive space. In particular, this Dirac operator satisfies a remar-
quably simple formula for its square which is a direct generalization of Parthasarathy’s formula on
symmetric spaces ([Par72]). This established the link between Kostant’s algebraic considerations
and recent models in string theory; in particular, it makes homogeneous naturally reductive spaces to
key examples for string theory and allowed us the derivation of strong vanishing theorems on them.
For representation theory, this opened the possibility to realize infinite-dimensional representations
in kernels of twisted Dirac operators on homogeneous spaces, as it had been carried out on symmetric
spaces in the seventies ([Par72], [Wol74], [AS77]). The success of this “deformed” Dirac operator
in the homogeneous case made it a natural question to look for possibilities to carry over these re-
sults to non homogeneous situations. This was achieved in two joint articles with Thomas Friedrich

v



vi 1. Summary

([AF04a], [AF04Db]) by giving an appropriate generalisation of the non standard connection and the
formula for the square of its Dirac operator as well as the Casimir operator on manifolds with non
integrable geometries. At the same time, they lay the foundations for a much larger research pro-
gram, namely, the systematic investigation of metric connections with torsion defined on the frame
bundle or solely on the spinor bundle. The article [AF03] studies a situation of this last type; there,
we discuss the solution space of the Killing equation for a spin connection defined by a three- and a
four-form. Finally, the article [AT04] deals with the geodesics of metric connections with vectorial
torsion.

2. Background and motivation

Mathematical motivation. From classical mechanics, it is a well-known fact that symmetry
considerations can simplify the study of geometric problems—for example, Noether’s theorem tells
us how to construct first integrals like momentum from invariance properties of the underlying
mechanical system. In fact, beginning in the seventies of the 19th century, the view formed that the
principle organizing geometry ought to be the study of its symmetry groups. In his inaugural lecture
at the University of Erlangen, which later became known as the “Erlanger Programm”, Felix Klein
said in 1872:

“Es ist eine Mannigfaltigkeit und in derselben eine Transformationsgruppe gegeben;
man soll die der Mannigfaltigkeit angehorigen Gebilde hinsichtlich solcher Eigen-
schaften untersuchen, die durch die Transformationen der Gruppe nicht gedndert

werden!.”

Hence, the classical symmetry approach in differential geometry was based on the isometry group
of a manifold, that is, the group of all transformations transforming the given manifold into itself.
By the mid fifties of the 20th century, a second intrinsic group associated to a Riemannian manifold
turned out to be deeply related to its fundamental properties like curvature and parallel objects.
This so-called holonomy group determines how a vector can change under parallel transport along a
closed loop inside the manifold (only in the flat case will the transported vector coincide with the
original one). Berger’s theorem (1955) classifies all possible holonomy groups of a simply connected,
irreducible and nonsymmetric Riemannian manifold (M, g). It can be either SO(n) in the generic
case or

dim M 4n 2n 2n 4n 7 8 (16)
HolM)  Spm)Sp(1)  U(m)  SUMm)  Sp(n)  Ga  Spin(7) (Spin(9))
quaternionic . Calabi- hyper-
name Kihler Kahler o Kihler par. par. (par.)
par. objects — VJ=0 VJ=0 VJ=0 V=0 — —
curvature Ric = A\g — Ric=0 Ric=0 Ric=0 Ric=0 —
Manifolds having one of these holonomy groups would then be called manifolds with special (in-
tegrable) holonomy, or special (integrable) geometries for short. We put the case n = 16 and

Hol(M) = Spin(9) into parentheses, because Alekseevski and Brown/Gray showed independently
that such a manifold is necessarily symmetric ([Ale68], [BG72]). The point is indeed that Berger
proved that the groups on his list were the only possibilities, but he was not able to show whether
they actually occured as holonomy groups of compact manifolds. It took another thirty years to find
out that—with the exception of Spin(9)—this is indeed the case: The existence of metrics with ho-
lonomy SU(m) or Sp(m) on compact manifolds follows from Yau’s solution of the Calabi conjecture
(1978), compact manifolds with holonomy G2 or Spin(7) were constructed by D. Joyce (1996, see
[Joy00]). Already in the sixties it had been observed that the existence of a spinor which was parallel

1«Let a manifold and in this a transformation group be given; the objects belonging to the manifold ought to
be studied with respect to those properties which are not changed by the transformations of the group.” — quoted
from F. Klein, Das Erlanger Programm, Ostwalds Klassiker der exakten Wissenschaften Band 253, Verlag H. Deutsch,
Frankfurt a. M., 1995, p. 34.
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with respect to the Levi-Civita connection implied the vanishing of the Ricci curvature ([Bon66))
and restricted the holonomy group of the manifold ([Hit74], [McKW89]), but the difficulties to
construct explicit compact manifolds with special Ricci-flat metrics inhibited any further research
on the deeper meaning of this result. There was progress in this direction only in the homogeneous
case: in some sense, symmetric spaces are the ”integrable” geometries inside the much larger class of
homogeneous reductive spaces. Consider for a noncompact semisimple Lie group G and a maximal
compact subgroup K such that rank G = rank K its associated symmetric space G/K. Then the
Dirac operator can be twisted by a finite dimensional irreducible unitary representation 7 of K, and
it is shown by Parthasarathy, Wolf, Atiyah and Schmid that, for suitable 7, most of the discrete
series representations of G can be realized on the L?-kernel of this twisted Dirac operator ([Par72],
[Wol74], [AS77]). The crucial step herein is to relate the square of the Dirac operator with the
Casimir operator Qg of G for trivial 7, the corresponding formula is

1
D? = Qg—l-gscal.

Meanwhile a quest for suitable generalizations of the classical holonomy concept was started. In 1971,
A. Gray introduced the notion of weak holonomy ([Gra71]), ”one of his most original concepts” and
”an idea much ahead of its time” (N. Hitchin in [Hit01]). This concept turned out to yield interest-
ing non-integrable geometries in dimensions n < 8 and n = 16. In particular, manifolds with weak
holonomy U(n) and G2 became known as nearly Kdahler and nearly parallel G2 manifolds, respec-
tively. But whereas the metrics of the compact Ricci-flat integrable geometries cannot be realized
in any explicit way, there are many well-known homogeneous reductive examples of non-integrable
geometries ([Gra70], [Fer87], [BFGK91], [FKMS97], [BG99], [Fin03] and many others). The
connection to Dirac operators emerged shortly after Friedrich showed in 1980 ([Fri80]) his seminal
inequality for the first eigenvalue A\; of the Dirac operator on a compact Riemannian manifold M"™
of non negative curvature,

(1) (P = s

where Ry denotes the minimum of the scalar curvature. In this estimate, equality occurs precisely if
the corresponding eigenspinor 1 satisfies the stronger Killing equation

1 R
LC,, _ 4= 0
VX = :t2 nin —1)

X = pX -1,

and this is in turn linked with the existence of a non-integrable geometry on M™; for example, a
compact 6-dimensional connected simply connected hermitian manifold is nearly Kéhler if and only
if it admits a Killing spinor with real Killing number p ([Gru90]). The connection to the then
emerging twistor theory was established by A. Lichnerowicz, who showed that on a compact mani-
fold the space of twistor spinors coincides—up to a conformal change of the metric—with the space
of Killing spinors ([Lich88]).

Physical motivation. String theory (see for example [LT89]) is a physical theory aiming at
describing nature at small distances (~ 1072° m). The concept of pointlike elementary particles is
given up and replaced by one-dimensional objects as building blocks of matter—the so-called strings.
Particles are then resonance states of strings and can be described together with their interactions
up to very high energies (small distances) without internal contradictions. Besides gravitation, it
incorporates many other gauge interactions and, hence, is an excellent candidate for a more profound
description of matter than the standard model of elementary particles. Quantization of superstrings
is only possible in the critical dimension 10, M-theory is a non-perturbative description of super-
strings with ” geometrized” coupling and lives in dimension 11. By dimensional reduction, one obtains
predictions for the physical 4- (or 3-)dimensional world, hence the interest in manifolds of the form
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M* x N' with (k,1) = (4,6),(4,7),(3,7),(3,8). Since its early days, string theory has been intri-
cately related with some branches of algebraic geometry. This is due to the fact that the integrable,
Ricci-flat geometries with a spinor field parallel with respect to the Levi-Civita connection are exact
solutions of the Strominger model for a string vacuum with vanishing B-field and constant dilaton.
This is a rich and active area of mathematical research, leading to interesting developments like the
discovery of mirror symmetry. As early as 1986, Strominger gave a consistent model for superstrings
with non-vanishing B-field, and described hypothetical solutions as complex manifolds. But the lack
of exact solutions with B # 0 remained a serious problem.

As one of the many interesting mathematical problems appearing in the context of string theory, the
physicists Ramond and Pengpan observed empirically that there was an infinite set of irreducible rep-
resentations of Spin(9) which partitioned into triplets S = U;{u¢, 0%, 7'}, where the representations
in each triplet were related in a remarkable way. For example, the infinitesimal character value of the
Casimir operator is constant on the triplet, and dim p 4+ dim o = dim 7* if numerated appropriately.
These triplets are used to describe massless supermultiplets, for example, N = 2 hypermultiplets in
(3 + 1) dimensions with helicity U(1) or N = 1 supermultiplets in eleven dimensions, where SO(9)
is the light-cone little group ([BRX02]). In order to explain this fact, B. Kostant introduced an
element in the tensor product of the Clifford algebra and the universal enveloping algebra of a Lie
group and derived a remarkable formula for its square ([GKRS98|, [Kos99]). The triplet struc-
ture of representations observed for Spin(9) is then due to the fact that the Euler characteristic
of F4/Spin(9) is three, hence the name ”Euler multiplets” has become common for describing this
effect. In the next section, we will give a new interpretation of Kostant’s cubic operator, leading
to new perspectives in the construction of non-integrable models. In his article on ”Superstrings
with torsion” ([Str86]), A. Strominger describes the basic model in the common sector of type II
superstring theory as a 6-tuple (M™, g, V, H, ®, ¥) consisting of a spin manifold M", a Riemannian
metric g, a 3-form H, a dilaton function ® and a spinor field ¥. Then the field equations can be
written in the following form (here and in the sequel, V9 denotes the Levi-Civita connection):

1
Ricij—zﬂimnﬂjmnmv}%j@ =0, 6 ?*H) =0,

(V%%—iXJH)d; o, (d@_%ﬂ)-¢ — 0.

If one introduces a new metric connection V such that its torsion is given by the 3-form H,
1
VxY = V%Y + §H(X, Y, -),

one sees that the third equation is equivalent to V¥ = 0. Similarly, the other equations can be
rewritten in terms of V. For constant dilaton @, they take the particularly simple form ([FI02])

(2) RicV' =0, 69(H) =0, V¥ =0, H-U =0,

and the second equation (69(H) = 0) then follows from the first equation (Ric¥ = 0). For M
compact, I showed in [Agr03, Theorem 4.1] that a solution of all equations is necessarily such that
H =0, i.e. an integrable Ricci-flat geometry with classical holonomy given by Berger’s list. Besides
the well-established Calabi-Yau manifolds, Joyce manifolds with classical holonomy G2 or Spin(7)
thus became of interest in recent times (see [AWO01], [CKLO1]). From a geometrical and mathe-
matical point of view, this result means that it is important to study weaker problems first, i.e. the
non compact case or partial solutions. A first step is the investigation of metric connections with
totally skew-symmetric torsion and their Dirac operators, parallel spinors etc. Friedrich and Ivanov
proved that several non-integrable geometric structures (almost contact metric structures, nearly
Kéhler, weak Go-structures) admit a unique connection V preserving it with totally skew-symmetric
torsion ([FI02]). Hence, these geometries admit invariant connections with a uniqueness property
which do not coincide with the Levi-Civita connection. This is a first step towards an understanding
of non-integrable geometries purely by its holonomy properties. In fact, time was just ready for a
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new look at the intricate relationship between holonomy, special geometries and differential forms:
Fino, Chiossi and Salamon introduced and studied the (slightly more restrictive) concept of intrinsic
torsion ([Fin98], [CS02]). Swann tried weakening holonomy ([S00]), and N. Hitchin characterized
non-integrable geometries as critical points of some linear functionals on differential forms ([Hit01]).
In particular, he obtained a generalization of Calabi-Yau-manifolds ([Hit00]) and a new, previously
unknown special geometry in dimension 8 (?weak PSU(3)-structures”), which deserves further inves-
tigation. Furthermore, the Italian school (Chiossi, Salamon, Fino, Dotti and others) devoted over
the past years a lot of effort to the explicit construction of homogeneous examples of non-integrable
geometries with special properties in small dimensions (see for example [Fin03], [FG03], [FPS02],
[SO01] and the litterature cited therein), hence making it possible to test the different concepts on
explicit examples.

The first non-integrable geometry that raised the interest of string theorists was the squashed 7-
sphere with its weak Gs-structure, although the first steps in this direction were still marked by
confusion about the different holonomy concepts. A good overview about G2 in string theory is
the survey article by M.Duff ([Duf02]). It includes speculations about possible applications of
weak Spin(9)-structures in dimension 16 ([Fr01]), which a priori are of too high dimension to be
usually considered in physics. In dimension three, it is well known (see for example [SSTP88|)
that the Strominger equation V¥ = ( can basically only be solved on a compact Lie group with its
biinvariant metric, and that the torsion of the invariant connection V coincides with the Lie bracket.
In dimension four, the Strominger model leads to a HKT structure, i.e. a hyperhermitian structure
that is parallel with respect to V ([IP01], [DI01]), and—in the compact case—the manifold is
either a Calabi-Yau manifold or a Hopf surface. Hence, the first interesting dimension for further
mathematical investigations is five.

Obviously, besides the basic correspondence outlined here, there is still a more detailed connection
between special geometries and detailed properties of physical models constructed from them to be
understood. Some weak geometries have been rederived by physicists looking for partial solutions
by numerical analysis of ODE’s and heavy special function machinery ((GKMWO01]).

3. Overview of results

So far, there has been only very little investigation of homogeneous manifolds yielding (partial) so-
lutions to the string equations, mainly because most mathematicians working in the field have a
strong background in algebraic geometry. Yet, previous experience from weak special geometries
leads to the expectation that homogeneous solutions should abound, since they yield huge classes of
(completely accessible !) examples of such geometries. It is thus natural to study the homogeneous
non-symmetric case first if one is interested in geometric constructions (as opposed to numerical so-
lutions like those mentioned above). In his article [Kos99], B. Kostant introduced a purely algebraic
object called ”cubic Dirac operator” in order to explain the occurrence of multiplets of represen-
tations as observed by Ramond and Pengpang (see Section 2). The square of his algebraic object
fulfilled a remarkable identity, which formally looked like the classical Parthasarathy formula in the
symmetric case. My key observation in [Agr03] was that one can introduce a metric connection
on certain homogeneous spaces whose torsion (viewed as a (0, 3)-tensor) is a 3-form such that the
associated Dirac operator has Kostant’s algebraic object as its symbol. More precisely, consider a
Riemannian reductive homogeneous space M = G/ H with Lie algebra decomposition g = m+§, and
denote the induced scalar product on m by (, ). By a theorem of Wang, there is a one-to-one corre-
spondence between the set of G-invariant metric affine connections and the set of Ad (H)-equivariant
linear mappings Ay : m — so(m). Consider the one-parameter family of connections V* defined by
(t eR)

An(X)Y = t-[X,Y]n,
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where we split the commutator into its m and h part, [X,Y] = [X,Y]w + [X,Y]y. It joins the
canonical connection (¢ = 0) to the Levi-Civita connection (¢ = 1/2) and has torsion
THX,Y,Z) = (TYX,Y),Z) = (2t —1){[X,Y]m, Z).

Hence T is totally skew-symmetric if and only if M belongs to the large class of spaces which are
naturally reductive with respect to G, i.e. the metric satisfies for all X, Y, Z € m

The canonical connection can alternatively be defined as the unique invariant connection with self-

parallel torsion, V9T = 0. We have computed all basic geometric data of these connections. After
lifting V* to the spinor bundle, one finds for its Dirac operator D? the remarkable expression

(3) D' = > Zi- Zi()+t-H- 9.
i=1
Here, Z1,...,Z, denotes an orthonormal basis of m, Z;(¢) is the usual directional derivative, and

H is (up to omission of a factor depending on t) the threefold product inside the Clifford algebra
induced by the 3-form T,

H = g > A1Zi Zilws Zk) Zi - Zs - Zi.
i<j<k
It is this element H which inspired to B.Kostant the name ”cubic Dirac operator”. Our analysis
shows that it is a normal Dirac operator associated to some non-standard connection and that every
Dirac operator coming from a metric connection with skew-symmetric torsion will have this form,
i.e. being ”cubic” is not a special property of the family considered here. In analogy to the classical
Parthasarathy formula in the symmetric case, we computed the square of D! in the present case.
Define the "m-part” of the Jacobi identity as

Jacm(X,Y, Z) = [X,[Y, Z]wlw + [Y) [Z, X]w)m + [Z, [X, Y]] -
Then we have the following theorem:

Theorem 3.1 (General Kostant-Parthasarathy formula [Agr02, Théoreme 2.1], [Agr03, Theorem
3.2]). Forn >5, the square of D! satisfies the identity

(D26 = Q(¢)+ ~(1—31) S 2, Ziw, Z0) Zi - Z5 - Zi()

2 >
7,k
B % > (2 (9 = 1) Jac(Z, 2k, Z1)) - Zi - Dy - Zn- Dy -
1<j<k<l
1 3
T3 > (126, 2,0, 12, Zi)) o + th > Qul(Zi, 23,12, Z])0 -
i, ij

It is immediate that this formula allows considerable simplifications if ¢ = 1/3, and this is in fact the
connection used by B. Kostant in his work.

Theorem 3.2 (Kostant-Parthasarathy formula for D/3 [Agr02, Théoreme 2.2], [Agr03, Theorem
3.3]). Forn >5 andt = 1/3, the general formula for (D*)? reduces to

(1) (D3P = Qg(0) + g sl + 5 Y Qn((20 2,0 120 Z) 0

0.
This formula is the differential geometric version of the algebraic identity [Kos99, Thm 2.13]. Tt
coincides with Parthasarathy’s classical formula from 1972 in case M is symmetric. In fact, S.
Slebarski had already noticed independently that the parameter value ¢ = 1/3 had distinguished
properties (see Theorem 1 and the introduction of [Sle87a], as well as [Goe99]). Although his
articles [Sle87a] and [Sle87b| contain several attempts to generalize Parthasarathy’s formula for



3. Overview of results xi

D?, none of them seems to come close to Kostant’s result. We shall call the connection V'/3 the
Kostant-Slebarski connection. Notice that the scalar appearing in equation (4) can be expressed in
purely geometric terms, yielding

(5) (D3 = 04(1) + gSeal? + |7,

where Scal? denotes the Riemannian scalar curvature. As a corollary, one obtains immediately from
Theorem 3.1 that the first order differential operator

DY = Y (26 Zj\ms Z0) Zi - Z; - (@)
i,4,k
is G-invariant. It exists only on non symmetric homogeneous spaces and certainly deserves further
investigation. If G is compact, the scalar appearing on the right hand side of equation (4) can be
rewritten in representation theoretic terms as ||og||? — ||op||? and has the property of being always
positive, even if the Riemannian scalar curvature of M becomes negative. Hence, Theorem 3.2

implies an eigenvalue estimate for the Dirac operator D'/3 in the tradition of Friedrich’s estimate
from 1980 (eq. (1)).

Corollary 3.1 ([Agr02, Corollaire 2.3], [Agr03, Corollary 3.1] ). If the operator Qg is non-negative,
the first eigenvalue /\}/3 of the Dirac operator D'/3 satisfies the identity

2
(6) (M) > logl? = llosll?

Equality occurs if and only if there exists an algebraic spinor that is fixed under the lift of the isotropy
representation.

Examples of equality are for example the Aloff-Wallach metrics on SU(3)/S!. In fact, the fixed
spinors are precisely the parallel spinors of the canonical connection. Notice that a Killing spinor
need not be a fixed spinor under the lifted isotropy representation or vice versa, though it can happen
that both notions coincide. Looking back at the string equations for constant dilation (eq. (2)), one
sees that the Dirac operator from equation (3) is particularly suitable to study parallel spinors with
H- -y =0

Theorem 3.3 ([Agr03, Thm 4.3]). If the operator Qg is non-negative and V* is not the Levi-Civita
connection (i.e., t # 1/2), there cannot exist any spinor satisfying the equations Vi) =0 and H -
simultaneously.

It had been observed in Section 2 that for the Levi-Civita connection, the existence of a parallel
spinor implies the vanishing of the Riemannian Ricci curvature ([Bon66]). Curiously, for other
connections, the existence of a parallel spinor and Ricci flatness rather seem to be obstructions to
each other. Following the lines of the Riemannian proof, one gets for the general case intricate
conditions linking the Ricci tensor to the torsion form. We used them to prove the following result:

Proposition 3.1 ([Agr03, Prop. 4.1]). If the canonical connection V° is Ricci flat and admits a
parallel spinor, the exterior derivative of its torsion T satisfies (X 1dT°) -1 =0 for all vectors X
i m. In dimension n =4,5,6 and 7, this last condition cannot hold for algebraic reasons.

We end our remarks on vanishing results with the precise statement of a general theorem already
mentioned before:

Theorem 3.4 ([Agr03, Theorem 4.1] ). Let M™ be a compact Riemannian manifold with metric
(,) and a metric connection ¥V with totally skew symmetric torsion T. Suppose that there exists a
spinor field 1 such that all the equations

Ricv. =0, V# =0, T-U =0
hold. Then T =0 and V 1is the Levi-Civita connection.
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The article [Agr03] ends with a thorough discussion of an example, namely, the naturally reduc-
tive metrics on the 5-dimensional Stiefel manifold V4 2 = SO(4)/SO(2). This contact manifold (see
[Bla02] as a general reference for these) was known before to carry a Sasakian metric with two Killing
spinors ([Fri80]); from the point of view of parallel spinors, all contact metrics on Vj 2 turned out
to be equally interesting.

Before describing the contents of the next papers, let us begin with some general remarks on torsion.
The notion of torsion of a connection was invented by Elie Cartan, and appeared for the first time in
a short note at the Académie des Sciences de Paris in 1922 (see [Car22]). Although it contains no
formulas, Cartan observes that such a connection may or may not preserve geodesics, and turns his
attention first to those who actually do so. In this sense, E. Cartan was the first to investigate this
class of connections. At that time, it was not yet customary—as it became later in the second half
of the 20th century—to assign to a Riemannian manifold only its Levi-Civita connection. Rather,
Cartan demands (see [Car24b)):

Etant donné une variété plongée dans lespace affine (ou projectif, ou conforme etc.),
attribuer a cette variété la connexion affine (ou projective, ou conforme etc.) qui
rende le plus simplement compte des relations de cette variété avec l’espace ambiant.

He then goes on to explain in very general terms how the connection should be adapted to the
geometry under consideration. We believe that this point of view should be taken into account in
Riemannian geometry, too. The canonical connection of a naturally reductive Riemannian space
is a first example (see [Agr03]). Moreover, we know many non integrable geometric structures on
Riemannian manifolds admitting a unique metric connection preserving the structure and with non
vanishing skew-symmetric torsion (see [FI02], [Fri03b]). Following Cartan as well as the idea that
torsion forms are candidates for the so called B-field in string theory, the geometry of these connec-
tions deserves systematic investigation. Basically, there were up to now no general results concerning
the holonomy group of connections with torsion. The question whether or not a connection of that
type admits parallel tensor fields differs radically from the corresponding problem for the Levi-Civita
connection. In particular, one is interested in the existence of parallel spinor fields, since they are
interpreted in string theory as supersymmetries of the model.

We give a short review of the 8 classes of geometric torsion tensors. Consider a Riemannian manifold
(M™, g). In a point, the difference between its Levi-Civita connection V9 and any linear connection
V is a (2,1)-tensor A4,
VxY = VLY +AX)Y), X, YeTM.

The vanishing of the symmetric or the antisymmetric part of A has an immediate geometric inter-
pretation. The connection V is torsion-free if and only if A is symmetric. The connection V has
the same geodesics as the Levi-Civita connection V9 if and only if A is antisymmetric. Following
Cartan, we study the algebraic types of the torsion tensor for a metric connection. Denote by the
same symbol the (3,0)-tensors derived from A, T by contraction with the metric. We identify T M
with TM* via the metric from now on. Let 7 be the n?(n — 1)/2-dimensional space of all possible
torsion tensors,

T = {Te®TM |T(X,Y,Z2)=-T(Y,X,Z)} = A*TMQTM.
On the other side, a connection V is metric if and only if A belongs to the space
A9 = TM @ AN°TM = {Ac@TM | AX,V,W)+ AX,W,V) = 0}.
Proposition 3.2 ([Car25, p.51], [TV83]). Forn > 3, the space T of possible torsion tensors splits

under O(n,R) into the sum of three irreducible representations, T = R" ® A3(R") ©T', as does A9.

Furthermore, the formulas

2AX,Y,Z) = T(X,Y,Z)-T(,Z,X)+T(Z,X,Y) .

define an equivariant bijection A9 — T .
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The eight classes of linear connections are now defined by the possible parts of their torsions T'
in these components. If one looks at the class of linear metric connections, then these are also
uniquely determined by their torsion. The nice lecture notes by Tricerri and Vanhecke [TV83]
use a similar approach in order to classify homogeneous spaces by the algebraic properties of the
torsion of the canonical connection. They construct homogeneous examples of all classes, and study
their “richness”. The described decomposition shows that a natural class of non-torsion free metric
connections are those with skew-symmetric torsion form 7' € A3(R"); the articles [AF04a], [AF04b]
and [AF03] deal with these as well as spinorial connections defined by exterior forms of higher degree.
Observe that we can characterize these connections geometrically as follows:

Corollary 3.2. A connection V on M is metric and geodesics preserving precisely if its torsion T'

lies in A>(TM). In this case, 2 A =T holds,
1
VxY = V&Y + §T(X,Y,—),
and the V-Killing vector fields coincide with the Riemannian Killing vector fields.

[ATO04] is devoted to the geodesics of metric connections whose torsion is given by a vector, i. e. lies
in the first component of the decomposition in Proposition 3.2. We shall henceforth speak of con-
nections with vectorial torsion.

In our joint article [AF04a], we first study the linear case in very general terms, i.e., euclidian space.
We associate with any exterior form T' € A¥(R") its covariant derivative VT acting on spinor fields
¥ : R™ — A, by the formula

Vi = V%0 + (X JT) 9.
For a 3-form T' € A3(R"), the spinorial covariant derivative V7 is induced by a linear metric con-
nection with torsion tensor 27,

VY = V&Y + 2T(X,Y,-).

Definition 3.1. ([AF04a, Dfn 2.1 and 2.2]). Let T be an exterior form on R™. The Lie algebra gr
is the subalgebra of the Clifford algebra c[(R™) generated by all elements X 1T, where X € R" is a
vector. The Lie algebra

br = [gr, §r] C c(R™)
is called the (infinitesimal) holonomy algebra of the exterior form T'.

The Lie algebra gr is invariant under the action of the isotropy group Gr, but has no relationship
with the Lie algebra gr of Gr. If k+ (kgl) = 0 mod 2 (for example, k = 3), gr lies in s0(n) C c((R™)
([AF04a, Prop. 2.1]). In our examples, hr did always coincide with gr; for 3-forms, we were able
to show thar gr is a semisimple Lie algebra ([AF04a, Theorem 3.1]). Moreover, it cannot preserve
a non degenerate 2-form or a spinor, hence there are no parallel spinors for T' # 0 ([AF04a, Prop.
3.3, Thm 3.2]). On the other side, many representations of a compact, semisimple Lie algebra occur
as the holonomy algebra of some 3-form, for example the adjoint representation can be realized in
this way. We introduce an obstruction for a Lie algebra representation to be the holonomy algebra
of some 3-form and show on an example how it may be used to rule out some representations. In
particular, the unique, irreducible 16-dimensional representation of the algebra spin(9) cannot be the
holonomy algebra of some 3-form.

In the next step, we generalize the algebraic results to the case of a Riemannian spin manifold
(M™, g, T) with a metric connection V. Consider the one-parameter family of linear metric connec-
tions with torsion defined by
VY = VLY +2sT(X,Y,—)

and its lift to the spinor bundle S of M. In [FI02, Thm 3.1, 3.3], Friedrich and Ivanov derived a
formula for the square of the Dirac operator D* associated with V*. This formula for (D*)? has the
disadvantage of still containing a first order differential operator as well as several 4-forms, which
are difficult to treat algebraically. Inspired by the homogeneous case—where the Kostant-Slebarski
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connection is related to the canonical connection by a 1/3-shift, we were looking for an alternative
comparison of (D?%)? with the Laplace operator of some other connection V*' from the same family.
It turns out that the Laplacian for the parameter s should be linked to the Dirac operator for the
parameter s/3, the remainder being a zero order operator. Similar formulas can be found in [Bis89].

Theorem 3.5 ([AF04a, Thm 5.2]). The spinor Laplacian A® and the square of the Dirac operator
D*/3 are related by

1
(D*/3)? = A® 4+ sdT + 1 Scal? — 25%[|T| 2.
By integrating the latter formula on a compact manifold M™, we obtain:

Theorem 3.6 ([AF04a, Thm 5.3]). Let (M™, g, T) be a compact, Riemannian spin manifold of non
positive scalar curvature, Scal? < 0, and suppose that the 4-form dT acts on spinors as a non positive
endomorphism. If there exists a solution ¥ # 0 of the equation

Vi = V¢ + (XJT) -4 = 0,

then the 3-form and the scalar curvature vanish, T = 0 = Scal?, and v is parallel with respect to the
Levi-Civita connection.

Theorem 3.6 applies, in particular, to Calabi-Yau or Joyce manifolds. These are compact, Ricci-
flat Riemannian manifolds in dimensions n = 6,7 with one parallel spinor field. Let us perturb the
connection V7 by a 3-form such that dT is non positive on spinors (for example, a closed form). Then
the new connection V7' does not admit V7-parallel spinor fields. Physically speaking, this means that
exact vacuum solutions of the Strominger model cannot be deformed in this way into non-vacuum
solutions. Nilmanifolds and their compact quotients M™ = G/T" are a second family of examples
where the theorem applies. A further family of examples arises from certain naturally reductive
spaces and a torsion form 7" being proportional to the torsion form of the canonical connection, see
[Agr03].

The integral formula from Theorem 3.6 can also be applied to the determination of the possible
values of s for which parallel spinors can exist. In the generic case, the existence of a V*-parallel
spinor restricts the possible parameter s via a polynomial equation. Moreover, our integral formulas
prove that, on a compact manifold, basically only three parameters are possible ([AF04a, Thm 6.1]).
In case that the torsion form is associated with a special non integrable geometry, the connection
V* with a parallel spinor is sometimes unique. A result of that type requires additional informations
concerning the underlying geometry. We prove it for 5-dimensional Sasakian manifolds equipped
with their canonical connection ([AF04a, Prop. 6.2]).

The last part of [AF04a] is devoted to examples. We construct on the Aloff-Wallach manifold
N(1,1) = SU(3)/S* a two-parameter family of metrics that admits two inequivalent cocalibrated
Go-structures. It is well known (see [BFGK91]) that N(1,1) carries two distinguished metrics,
namely an Einstein and a 3-Sasakian one (which, of course, is automatically Einstein). For this
family, we investigate the torsion forms of their unique connections as well as other geometric data.
Our approach is different from the usual one (see [CMS96)). First we construct 3-forms with parallel
spinors on N(1,1). The underlying Gao-structure is cocalibrated and many of the geometric data are
encoded into the torsion 3-form we started with. Moreover, we are interested not only in the type
of the Ga-structure, but mainly in the geometry of the unique connection preserving this structure.
One result is that we were able to find a metric (which is none of the ones mentioned above) and a
3-form T such that V7 and V~7 admit parallel spinors, hence illustrating in a non trivial situation
that several values are indeed possible in [AF04a, Thm 6.1]. The same method is then applied in
order to construct spinorial connections defined by 4-forms and admitting parallel spinor fields. It
turns out that some of these connections are closely related to the 3-Sasakian structure of N(1,1):

Theorem 3.7 ([AF04a, Thm 8.1, 8.2]). 1) Any 3-Sasakian manifold in dimension seven admits a
P2-parameter family of metric connections with skew-symmetric torsion and parallel spinors. The
holonomy group of these connections is a subgroup of Gs.
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2) Any 3-Sasakian manifold in dimension seven admits a P%-parameter family of spinorial connec-
tions defined by 4-forms and with parallel spinors. The spinorial holonomy group of these connections
is a subgroup of GL(7,R).

In [AF03], we introduce a second order differential operator €2 for a Riemannian manifold (M™, g, V)
equipped with a metric connection with skew-symmetric torsion T'. If we denote by (D'/3)? the square
of the Dirac operator corresponding to the connection with torsion form 7°/3, this so-called Casimir
operator of M™ differs from (D'/3)? by a zero order term. The parameter shift by 1/3 is the same
than previously used in the general Kostant-Parthasarathy formula (Theorem 3.1 in this summary)
as well as the Weitzenbock formula (Theorem 3.5). Our operator 2 is constructed in such a way
to coincide with the Casimir operator of a naturally reductive space in the homogenous situation,
hence motivating its name. If the torsion form T is V-parallel, the formula for £ simplifies to

Q= (D3 — 11_6 (28cal? + ||T]?) ,

which can be directly compared to equation (5) and Theorem 3.2. Even for a naturally reductive
homogeneous space, this definition has one big advantage: D'/3, Scal’ and ||T||? are geometrically
invariant objects, whereas the Casimir operator €1 in its usual sense still heavily relies on the concrete
realization of the homogeneous space M as a quotient.

The kernel of  contains all V-parallel spinors, which makes it a useful tool for the study of the
space of all parallel spinors. From the integral formulas in [AF04a], one obtains criteria when
is a non-negative operator, a question which is difficult to answer even in the homogeneous case
([AF04b, Prop. 3.3]). If the torsion form is V-parallel, the Casimir operator 2 and the square of
the Dirac operator (D'/3)2 commute with the endomorphism 7' ([AF04b, Prop. 3.4]),

QoT = ToQ, (DY32oT = To(DY??2.

Hence, T and D9 (the usual Riemannian Dirac operator) act in the kernel of D'/ if M is addi-
tionnally compact. One further consequence is an eigenvalue estimate linking the spectrum of the
endomorphism 7" and the minimum of the scalar curvature. We give a detailed description of the
Casimir operator on 5-dimensional Sasakian manifolds, 6-dimensional nearly Kéhler manifolds and
7-dimensional cocalibrated Go-manifolds.

The article [AF03] deals with a special supergravity model. In July 2003, G. Papadopoulos (Cam-
bridge) raised the question of finding solutions to the equation

1 1
Vg(\I/—l-Z-(XJT)-\I/—Fm-(XJF—8-X/\F)-\I/ =0,

where T is a 3-form as before and F' a 4-form flux on the Riemannian spin manifold M (see [Duf02],
[FPO02]). This is a highly overdetermined system of first order partial differential equations. 11-
dimensional space-time solutions are interesting and the models with a maximal number of super-
symmetries have been classified (see [FP02]). The Kaluza-Klein reduction of M-theory (see [Ali01],
[BJ03], [BDS01] and [WIN'W85]) yields that dimensions 4 < n < 8 are of interest, too, possibly
with some additional algebraic constraints, like 7- ¥ =0 or F- ¥ = 0.

The aim of [AFO03] is to present a geometric method for solving the equation under consideration.
The main idea of our approach is easy to explain. We start with a Riemannian manifold admitting
a spinor field ¥ of some special type. For this, there are many possibilities. The spinor field may be
a Riemannian Killing spinor (see [Fri80]) on some irreducible Einstein space,

ViU = A XU,

The spinor field may be a Kéhlerian Killing spinor (see [Kir93]) defined on some special Kahler
manifold. In odd dimensions, we can start with an n-Einstein-Sasakian manifold and its contact
Killing spinor (see [FKO00]). On a reductive space, the spinor field may be an invariant spinor of
the isotropy representation. In any case, triples (M", g, ¥) of the type we need have been studied
very intensively in mathematics since more then 20 years. In particular, the dimensions n < 8 and
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the corresponding special geometries play a crucial role. Let us moreover assume that there exists
a “canonical” family (T, F,) of forms on M™ depending on some parameter w. We consider the
system of n - 2["/2] algebraic equations in the parameters w,
1 1

(’\'X e 144
Furthermore, we can add the equations T, - ¥ = 0 or F, - ¥ = 0. We solve the corresponding
equations with the help of standard math computer programs. In this way, we obtain families of 3-
and 4-forms solving the equation on the manifold we started with. The first interesting dimension
in presence of a 4-flux is seven. Applying the method just described, we can prove:

Theorem 3.8 ([AF03, Thm 2.1]). Let M” be a T-dimensional 3-Sasakian manifold and fiz a Rie-
mannian Killing spinor U, as well as two real numbers p and q. Then there exists a T-dimensional
family of torsion forms T and flux forms F defined by the contact structures such that

(XJT,) + — (X JF, — 8-X/\Fw))-\lf = 0.

1
Vg(\ll+Z~(XJT)-\IJ+p~(XJF)~\I/+q-(X/\F)~\IJ =0.

The condition F - U = 0 restricts to a subfamily of dimension siz. If 4p — 3q # 0, the condition
T - ¥ = 0 defines again a 6-dimensional subfamily. If 4p — 3q = 0, then T - ¥ = (14/3) - U for
any torsion form in the family. Both constraints together imply that the spinor field ¥ is necessarily
zero.

From the geometric point of view, there is an interesting case, namely 4p — 3 ¢ = 0. This is not the
ratio of the parameters p, ¢ appearing in supergravity.

The Gs-case has been already investigated in M-theory compactifications to dimension four (see
[BDSO01]). In both cases, the underlying metric has to be Einstein (see [BG99]). On the Aloff-
Wallach space N(1,1), we were able to construct families of non Einstein metrics equipped with
torsion forms, flux forms and Killing spinors:

Theorem 3.9. For every metric gs, on N(1,1) = SU(3)/S' and every pair (p,q) € R?, there exists
a 10-dimensional affine space of forms (T, F') such that the spinor field U3 satisfies the Killing spinor
equation

ViU = V‘)’(\If—l—%(XJT)\If—l—p(XJF)\II—i-q(X/\F)\II:O.

Furthermore, the additional condition F - W3 = 0 singles out a 9-dimensional affine subspace. For
4p — 3q # 0, the set of forms satisfying T - W3 = 0 is again a 9-dimensional affine subspace, but
its intersection with forms such that F - W3 = 0 is empty. For 4p — 3q = 0, there are no 3-forms
such that T - ¥ = 0.

(P53 is some special spinor field on N (1, 1) described in Section 7 of [AF04a]). The paper ends with
the discussion of the special coupling 4p = 3¢ in dimension 7.

The article [AT04] returns to the 8 classes of metric connections with torsion described in Propo-
sition 3.2. Besides metric connections whose torsion is a 3-form, the simplest class consists of those
connections which have vectorial torsion. Explicitly, they may be written as

VxY = VLY +g(X,Y)V —g(V,Y)X

for some fixed vector field V on M™. The case of a surface (n = 2) is special in as much that any
metric connection has to be of this type. In fact, classical topics of surface theory like the Mercator
projection which maps loxodromes on the sphere to straight lines in the plane can be understood in
a different light with their help.

For some reasons, these connections have not attracted as much attention in the past as we believe
they deserve. Correspondingly, an overview over the existing literature (that we are aware of) is
quickly given. In [TV83|, Tricerri and Vanhecke were led to the study of such connections in the
context of the classification problem of homogeneous structures on manifolds. They showed that if
M is connected, complete, and simply connected and V is parallel, i.e. VV = 0, then (M, g) has
to be isometric to hyperbolic space. Vicente Miquel studied in [Miq82] and [Miq01] the growth of
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geodesic balls of such connections, but did not investigate the detailed shape of geodesics. In any
way, a curve v(t) is a geodesic of V if it satisfies the differential equation

V5 + 93,4V — g(ViA)F = 0.
Taking the scalar product of this equation with 4 yields g(Vfﬂ, 4) = 0, that is, 4 has constant length

FE > 0, which reflects of course just the fact that V was metric. Hence, the geodesic equation can be
written

(7) VI + B’V - g(V,4)5 = 0.

In fact, there are qualitatively two cases to be distinguished. If ¥ is parallel to V at the origin,
4(0) = a - V(7(0)), we conclude that Vg(o)/y(()) = 0 and ~(¢) coincides locally with a classical
geodesic of the Levi-Civita connection. In particular, a V-geodesic which stays parallel to V' for all
times is exactly a V9-geodesic. Generic V-geodesics are those for which ¥ is never parallel to V; their

shape will be qualitatively very different from that of their Levi-Civita “cousins”. Periodic geodesics
are necessarily non-generic. More precisely, one shows:

Proposition 3.3 ([AT04, Cor. 2.1]). For a Killing vector field V, any periodic V-geodesic is
automatically o Levi-Civita geodesic and, up to a constant, an integral curve of V.

One problem with the study of geodesics for connections with vectorial torsion is the lack of good
integrals of motion. Isometries leaving V invariant generate symmetries of the V-geodesics, but no
invariants of Noether type. Yet, invariants of motion must exist in some special situations, as the
following example due to Cartan shows:

Example 3.1 (Cartan’s example). In [Car23, §67, p. 408-409], Cartan describes the two-dimensional
sphere with its flat metric connection, and observes (without proof) that “on this manifold, the
straight lines are the lozodromes, which intersect the meridians at a constant angle. The only
straight lines realizing shortest paths are those which are normal to the torsion in every point: these
are the meridians®”.

This suggests that there exists a class of metric connections on surfaces of revolution whose geodesics
admit a generalization of Clairaut’s theorem, yielding loxodromes in the case of the flat connection.
Furthermore, it is well known that the Mercator projection maps loxodromes to straight lines in
the plane (i.e., Levi-Civita geodesics of the euclidian metric), and that this mapping is conformal.
Theorem 3.10 provides the right setting to the understanding of both effects.

Theorem 3.10 ([AT04, Thm 3.1]). Let o be a function on the Riemannian manifold (M,g), V
the metric connection with vectorial torsion defined by V = —grad(o), and consider the conformally
equivalent metric § = e2°g. Then:
(1) Any V-geodesic (t) is, up to a reparametrisation 7, a VI-geodesic, and the function T is
the unique solution of the differential equation ¥+ 76 = 0, where we set o(t) := o oyo7(t);
(2) If X is a Killing field for the metric g, the function €”g(¥, X) is a constant of motion for
the V-geodesic y(t).

Cartan’s example is obtained (and generalized) by taking o := —Inr(s) on the surface of revolution
generated by rotating the parametrised curve o = (r(s), h(s)). Besides for the sphere, the result is
of particular interest for the catenoid: since it is a minimal surface, the Gauss map to the sphere
is a conformal mapping, hence it maps loxodromes to loxodromes. Thus, Beltrami’s theorem (“If
a portion of a surface S can be mapped LC-geodesically onto a portion of a surface S* of constant
Gaussian curvature, the Gaussian curvature of S must also be constant”, see for example [Kre91,
§95]) does not hold for metric connections with vectorial torsion—the sphere is a a surface of constant
Gaussian curvature, but the catenoid is not. In the last Section, we treat the euclidian plane with an

2Sur cette variété, les lignes droites sont les lozodromies, qui font un angle constant avec les méridiennes. Les
seules lignes droites qui réalisent les plus courts chemins sont celles qui sont normales en chaque point & la torsion :
ce sont les méridiennes. loc. cit.
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arbitrary vector field in great detail and show that the behaviour of geodesics is, already in this low
dimension, dominated by a highly non-trivial system of ordinary differential equations. In particular,
we give an example of a vector field which does admit a second invariant of motion, although it is
not a gradient and not geodesically complete (that is, the Hopf-Rinow theorem fails).

The last article in the present collection is the joint work with Roe Goodman on K-invariant vector
fields on symmetric spaces G/K [AGO03]. It can be read independently of the other articles and is
(together with [ATO04]) a purely mathematical paper. Its link with the other articles stems from
the fact that it also deals with the properties of invariant differential operators on homogeneous
manifolds. While G-invariant operators on symmetric spaces have been intensively studied (see, for
example, the books by Helgason [Hel78], [Hel84], [Hel94] for operators on functions, and [Par72],
[Wol74], [AS77] for Dirac operators on spinors), nothing was known before on K-invariant opera-
tors. Hence, it was necessary to start with the simplest situation, namely, the infinite-dimensional Lie
algebra of K-invariant vector fields on a reductive symmetric space G/K. It turned out to be useful
to work in the algebraic category, i.e. G is a complex connected reductive linear algebraic group and
K is the fixed points of an involutory automorphism 6 of G (thus G/K is the complexification of a
Riemannian symmetric space). The main case that we are studying— SL(2, C) with the conjugation
action—is of interest in the context of connections with skew-symmetric torsion, too. Indeed, a
recent result by Alexandrov, Friedrich and Schoemann ([AFS04]) shows that SL(2,C) is, besides
twistor spaces, the only hermitian 6-manifold with parallel characteristic torsion and non-abelian
isotropy group of the NS-3-form.

There is a canonical G-module isomorphism between the space X(G/K) of regular algebraic vec-
tor fields on G/K and the algebraically induced representation Ind%(a), where o is the isotropy
representation of K. In particular, the space X(G/K)X of K-invariant vector fields on G/K corre-
sponds to the K-fixed vectors in the induced representation. When G is simple and simply connected,
Richardson’s results [Ric82] imply that X(G/K) is a free module over the algebra J of K-biinvariant
functions on G. In Theorem [AGO03, Thm 2.2] we obtain an explicit set of free generators for a lo-
calization %(G/K)fb{, for some ¢ € J.

We next study X(G/K)¥ as a Lie algebra and obtain a formula for the commutator of K-invariant
vector fields in terms of the associated K-covariant mappings. The Cartan embedding G/K —
P C G given by gK — gf(g)~! is a fundamental tool in the study of symmetric spaces, and it is
natural to use it to study X(G/K)X. Invariant vector fields on G/K whose horizontal lifts to G are
tangent to P are called flat (in fact, the Cartan embedding induces a priori two different notions of
flatness, which we show to be equivalent). We obtain a commutator formula with no curvature term
for the action on P of these vector fields. For G simple and simply connected, we prove ([AGO03,
Thm 3.1]) that every element of X(G/K)¥ is flat if and only if K is semisimple (i.e. G/K is not the
complexification of a hermitian symmetric space).

In Section 4 we study the conjugation action of a semisimple group G on itself. This is an example
of the Cartan embedding of a symmetric space for the group G x G and involution 6(g, h) = (h, g).
In this case, J is just the algebra of regular class functions. Assuming G is simply-connected, no
localization is needed anymore:

Theorem 3.11 ([AGO03, Thm 4.1]). Assume G is simply connected and g is semisimple of rank
r. Let ©1,...,¢, be the characters of the fundamental representations of G. Then the vector fields
X1,..., X, on G corresponding to gradys, ..., grady, are a J-module basis for X(G)*4C. Further-
more, all conjugation-invariant vector fields are flat.

In the special case of SL(n,C), we calculate the commutators of an explicit basis of conjugation-
invariant vector fields. When G = SL(2, C), we construct a C-basis for X, = X(G)*4% and compute
the commutators and the action on invariants of this basis. We show that Xs is isomorphic to a
subalgebra of the Witt algebra ([AG03, Thm 4.5]) and we find the highest weight vectors inside
C[SL(2,0C)].

Finally, we establish a separation of variables theorem for SL(2,C). More precisely, using the pre-
ceding results, we construct explicitly a conjugation-invariant differential operator on SL(2,C) such



3. Overview of results Xix

that its kernel H realizes the isomorphism

C[SL(2,C)] = C[SL(2,C)]*450) @ 1 .
This result ([AGO03, Thm 5.3]) is the global version of the separation of variables in the isotropy
representation going back to Kostant and Kostant-Rallis ([Kos63], [KR71]). However, our proof

requires extensive representation-theoretic calculations and does not seem to extend to arbitrary
conjugation actions or symmetric spaces in any obvious way.
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